
Parallel face Detection and Recognition on GPU

Shivashankar J. Bhutekar1, Arati K. Manjaramkar2
1Research Scholar 2Associate Professor

Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded, India

Department of Information Technology (Nvidia Research Lab)

Abstract— Human face detection and recognition finds various
application in domain like Surveillance, Law Enforcement,
Interactive game application etc. These application requires
fast image processing in real time however with the proposed
work earlier does not gives that capability. In this paper we
have proposed technique that process image for face detection
and recognition in parallel on NVIDIA GeForce GTX 770
GPU which has compute Capability of 3.0. We have used Viola
and Jones for face detection and PCA Eigenfaces algorithm
for face recognition. The viola and jones shown result of
processing the faces at 15 frame per second but our method
shown approximately 109 frame per second in CUDA
(Compute Unified Device Architecture) development
framework. The algorithm are implemented to process data in
parallel and made some practical optimization changes to
work fast in C based programming model from NVIDIA . We
have tested our proposed work on static images, video frame
as well as on live camera frames captured device. We also
tested that our system works robustly in extremely
illumination condition. This work is done by PG students in
Institute NVIDIAs Research Lab.

Keywords— NVIDIA, PCA Eigenfaces, GeForce GTX 770,
GPU, CUDA, face detection, face recognition.

I. INTRODUCTION

The machine computation of human faces is most and
widely active research topic in domain of Image processing,
pattern recognition and in computer vision. The fact that the
image processing extracted feature provide clue in many
security, surveillance, banking, commercial sector system.
However the face detection and recognition are increasingly
used in video conferencing, video games, interactive game
play station, virtual reality system etc. The real time system
require algorithm that make interactivity as well as critical
nature of time which makes necessity to design the parallel
algorithm that process the huge amount of data generated
by capturing devices like smart cameras.

A typical face processing system is composed of face
detection, face recognition, face tracking and rendering.
Different faces can be tracked and recognized despite of
different location. In such a case it might be useful to track
a person from one camera view to another camera by
handing off face to another process. Now these type of
information to process is critical in secure environment. To
use these three modules i.e. Face Detection, Face
Recognition and Tracking, system should process on
current frame rates generated by device. This scenario
becomes advert when we try to process multiple streams
generated by multiple video devices. However thanks to

Face Detection and Recognition algorithm that they can be
computationally feasible for parallel processing.

In recent trends we have seen that Graphics processing
units emerges with high parallel computing capabilities. For
example the GeForce GTX 770 developed by NVIDIA
graphics card can gives 3213 GFLOPS. The CUDA
proposed by NVIDIA [1] is C-based programming model
gives developer to explore the use parallel computation
capabilities of GPU in easy manner without mapping
algorithm to graphics programming structure.

In this paper we have used the computation capability of
Modern GPU to achieve extreme parallelism for face
detection and recognition. As above GPU has a compute
capability of 3.0 [2] which provides a feature that below 3.0
doesn’t support. The global function that run on device can
be called from both host and device in compute capability
greater than 3.0 that provide multiple thread launching from
multiple previously launched threads. For face detection we
have used Viola and Jones [3] algorithm with Adaboost
framework and face recognition carried out with M. Turk,
A. Pentland, “Eigenfaces for Recognition” [4] which
provide ability to recognize the faces from above face
detector. We have developed the parallel algorithm from
above algorithms and implemented them in graphics
processor with the help of CUDA.

We have tested this our propped technique on static
images database, video database as well as live frames
captured from video devices. Our experimental results
shows that speed of face detection and recognition is much
higher rates as compare to previous work. We also
demonstrated our system is robust to changing illumination
scenarios.

This paper is organized in following section. Section II
provides the related done work in face detection and
recognition. Section III gives overview of GPU architecture
and memory model for general device. Section IV describe
Viola and Jones face detection method and its
implementation in CUDA with cascade detection. Section
V gives procedural and parallel implementation for face
recognition also describes the overall system design. Finally
section VI and VII gives performance analysis and
conclusion with future work.

II. RELATED WORK

The Image processing is widely research topic from last
two decade in which face detection and recognition is
mostly explored topic. The researcher proposed many
technique face detection [3], [5], [6], [7], [8] .Out of these
work the Viola and Jones [3] provided solution detect faces

Shivashankar J. Bhutekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2013-2018

www.ijcsit.com 2013

at 15 fps (for 320×288 images) with adaboost learning
algorithm on CPU. The work done in [9] detect the faces at
90 fps (for 320×240 images) with maintaining accuracy for
low resolution images.

For Face recognition the[4], [10], [12],[13], [14] are the
proposed techniques among these technique the PCA
proposed by M. Turk, A. Pentland [4] works on the training
set of M images to prepare face space. Training has much
more computation but initially it has done identifying the
unknown face can be done in minimum time. The work
done by Y. Woo, C. Yi, Y. Yi [14] for face recognition on
GPU shows calculation for 400 training set it takes
covariance matrix multiplication 120 ms, to calculate
eigenfaces 60 ms and projecting a face take 95 ms which
provides a feasible solution.

With CUDA programming model we can process these
two task i.e. face detection and face recognition in parallel.
The graphic processor has a compute capability of 3.0 can
launch multiple kernels from device. This provides a much
higher detection and recognition rates. As compare to
OpenGL CUDA provide faster data Transfer between CPU
to GPU whenever the memory is required by threads.
CUDA can also map host memory [15] that can be accessed
by kernel threads. In our work we use host mapped memory
as a shared Buffer that can be accessed by both GPU and
CPU. The advantage of creating a shared Buffer we doesn’t
require to transfer the whole data to GPU Memory When
the thread request the data the shared buffer data transferred
to block memory. This type of memory access is faster than
cudaMemcpy function. Our face recognition system
provides much higher rates than previously proposed
solution also this is the attempt to detect faces and
recognize them parallel on GPU.

III. GPU ARCHITECTURE AND CUDA PROGRAMMING

MODEL

The Graphics processor has a tremendous computation
capability for parallel computation previously used for
Image rendering. CUDA is a C – based programming
model provide easy development and deployment in
general purpose computation. In this section we will see
salient feature of CUDA programming and GPU
architecture.

The GPU has multiple processor and each processor is a
set of SIMD (Single Instruction Multiple Data) processor
known as streaming multiprocessor. For example the
GeForce GTX 770 has 192 multiprocessor that means each
has 16 SIMD cores. The device has separate global memory
where global data gets store, constant memory stores
readable data and texture memory used to perform read
only memory.

Figure 1 shows a CUDA programming model memory
model has a parallel computation block called as grid. Grid
is launched from host code. The CPU called as host and
GPU termed as device. A grid has 3 dimension launched in
x, y ,z coordinates form multiple grids can be launched in
one device as shown kernel 1,kernel 2. Grid contains thread
block also launched in 3 dimension usually referred to
access thread Index and Block Index. Figure 3 shows the
example of kernel launch of (3×2) block and each block

contain (5×3) threads These threads are unit of execution
and each thread cab be uniquely identified by block index
and thread index

Fig. 1 CUDA Programming and Memory model (courtesy: NVIDIA)

IV. CUDA BASED PARALLEL FACE DETECTION

A. CUDA IMAGE PYRAMID

 Image pyramid down sampling construction is done in
on GPU with taking scale factor of 1.2. We used nearest
neighbour down sampling method for creating the pyramid
for every block organized to detect a face present in it. Each
block calculate its own image down sampled until the
image size becomes 24×24. In viola and jones [3] the
detection window is taken as 24×24.The Fig. 2 shows
image pyramid for respective blocks.

Fig. 2 CUDA Image pyramid for each grid block

B. CUDA Integral Image Calculation
 Viola and jones uses adaboost machine learning
algorithm for accurate and fast face detection the algorithm
uses to pick up the most promising feature from over
complete set of haar feature to recognizes it is a face or not.
Figure 3 shows the four kinds of haar feature that need to
apply on image. Generally we can use 10 5 such feature of
different sizes and location on to image.
The Viola and jones used the frame detection window of
size 24×24. Now these feature are applied on to image to
calculate the sum of all pixel values under dark region
subtracted from sum of all pixel values under bright region.

Shivashankar J. Bhutekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2013-2018

www.ijcsit.com 2014

Fig. 3 haar feature rectangle A and B are 2 rectangle feature C and D are 3

and 4 rectangle feature to calculate the prefix sum (courtesy : [3])

For haar feature A (shown in fig. 3) applied on image
gives a higher value at nose area over a complete image.
But this method not feasible Viola and Jones used Integral
image calculation [3] .The integral image calculation at
location (x, y) is a sum of the pixel values above and to left
of the point (x ,y).

yyxx

yxiyxii
','

)','(),(

Using the integral image we can calculate rectangle sum
easily in four value access. Now we can calculate the image
integral on GPU using vertical prefix or by horizontal
prefix as shown in fig. 4 for each thread calculate sum row
wise or can be done in column wise.

A. Cascade Detection
Integral image represented in previous section computes

the sum of for rectangle in Fig. 3 shows that for rectangle A
and B takes six value access from cornel points for figure C
and D it takes eight and nine point access respectively.
There are large set these feature viola and jones [3] solved
this problem by defining feature as weak classifier and
strong classifier. The weak classifier decided as threshold
value assigned to them.

otherwise

pUpfif
Uh

0

)(1
)(

The equation h (U) is a weak classifier of image

detection window 24×24 indicated as U. Ɵ is a threshold
over parity p. This equation construct a set of weak
classifier which are used in adaboost learning algorithm to
construct a strong classifier. Combining these classifier
gives to form a strong classifier gives probability of sub
window 24 ×24 has a face or not. Following equation gives
describe strong classifier.

Fig. 4 Integral image calculation vertical prefix sum and horizontal prefix
sum (Courtesy [9])

T

t
tt UhUH

1

)()(

H (U) is a linear combination of weak classifier in a stage
from 1 to T where αt is a normalized weight of ht weak
classifier. Image of size 480 × 600 has 35 detection sub
window. Alternatively the size of window increased as the
image pyramid downscaled as shown in Fig. 2.To compute
strong classifier over a window of size 24 × 24 takes huge
amount of computation for all weak classifier. Viola and
Jones [3] comes with stagging solution consist set of weak
classifier in each stage. The first stage weak classifier give
most promising solution weather sub window contain a face
or not. The size number of weak classifier of stage increases
from one stage to another. Fig 5 shows at first stage if a sub
window passes first stage it given to second stage shows
that the window contain face else rejected from further
processing. Maximum non face sub window rejected in first
and second stage.
The cascade detector when passes all stages stage gives
result that the sub window has a face. This face is given to
another CUDA device function for face recognition
described in next section.

Fig. 5 A schematic progress of strong classifier as every window does this

processing in stages maximum non faces are rejected in stage 1 and 2
further processing avoided (courtesy :Viola and Jones [3])

Shivashankar J. Bhutekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2013-2018

www.ijcsit.com 2015

Fig. 6 grid view of a particular block along with thread operation

V. CUDA FACE RECOGNITION

Face Recognition we have used technique described by
M. Turk, A. Pentland [4]. Eigenface technique works on
previously training dataset from known faces calculates its
Eigenfaces. For our experiment we used two dataset first
yale dataset [16] of images contains 5760 images (90×112)
of 10 subjects size .second database used from BioId face
dataset [17] 1521 images (384×286) of 23 different person.
We also included the local faces in our experiment. The
training have been done on CPU but new face recognized
on GPU.

The set of training is organized to compute Eigenfaces
by taking all M images. Computes the average face from
image set as adding all matrix into each other taking
average let I be set of training images.

 M 321 ,,

The mean face can computed and subtracted from all
training image set.

M

n nM 1

1

 ii

The sample training set of 16 people and there mean face
is shown in Fig.7 and Fig. 8 respectively. Converting the
two dimensional images of N×N into one dimension N2 ×1
into matrix A size N2×M .For computing the covariance
matrix need N2 ×N2 computation which is not feasible as

TAAC
C has N2 eigen vectors which are difficult to choose from
and ay also run out of memory.so C can be computed as

AAC T

Subsequently the no of computation reduced from N2×N2 to
M×M also covariance matrix C has M no of eigen vectors
denoted as ui. The eigen vectors are selected from M eigen
vector.

otherwise

klif
uu lkk

T
l 0

1

M

n n
T
kk u

M 1

2)(
1

Where uk is a eigen vector and λk is eigen value for
covariance matrix C.
Whenever a face is detected by any of the thread from face
detection it is given to face recognizer. Let new face be ɼ
transformed into its eigenface component as

)(T
kk uw

Where k is number of eigen faces in face space [4].The
weights of eigenfaces ΩT = [ω1, ω2, ω3 … ωM’] provides the
contribution of each training images into input image
eigenface. Now the by using euclidian minimum distance
we can find the best describing face from training set.

|||| kk

Where k is a number of eigenface that give ε k minimum
over some threshold value θ. If a new face passes minimum
Euclidian distance then it the face from training set else it is
an unknown face. The Fig. 9 shows the complete over view
of our proposed system.

Fig. 7 an example of training set data with 16 image face (courtesy M.

Turk and A. Pentland [18])

Fig. 8 Mean face of faces from Fig 7 (courtesy M. Turk and

A. Pentland [18])

Shivashankar J. Bhutekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2013-2018

www.ijcsit.com 2016

 As the system overview describe each block computes its
own image from up to down sampling. Each thread
computes its sub window to find whether window contains
face or not by using viola and jones face detection
algorithm [3]. If any thread find face that face resizes to
training image size. The new face will be processed
instantly for recognition (as described in section V). Since
the face get processed instantly save time to other faces
recognize. Our experimental result show that difference.

Fig. 9 Complete overview of face processing system

VI. PERFORMANCE ANALYSIS

 The programming language used for CPU is C++ (gcc
version 4.6.3) and for GPU programming we used CUDA
5.5 C-based programming language provided by NVIDIA.
For loading and saving images used openCV 2.7.1 for
support. The processor intel ® Xenon(R) CPU E3-1220 V2
has 3.10GHz clock speed with 4 core and has 7.8 GiB
RAM. The GPU used GeForce GTX 770 GPU has 1536
cores, memory bandwidth of 220.6 GB/sec and has a 2 Gib
of global memory. The Fig. 10 shows some snapshot taken
form video device to show a person identity. Fig 10, 11
shows result on static images.

Fig. 10 Face detection and Recognition via live video device captured

frames

Fig. 11 face processing on static image.

Fig 12 gives a comparative analysis between the GPU
and CPU.As the frame size increases CPU execution time
increases rapidly for the last two sizes the CPU even takes 2
second to process the frame but for GPU it takes less than
second

Fig. 13 shows the response of face detector and
recognizer for on GPU as well as for CPU. As the face
recognizer work in parallel with face detector on GPU the
required time to finish as compare to CPU execution is
extremely less.

Fig. 12 statistical analysis of face processing system on GPU vs CPU with

different frame sizes.

Remember that these reading are taken for varying width
and height of same video device along with the one person
in front of camera device. On CPU face processing system
takes much time than GPU as it has to wait for all faces
detected in frame but in case of parallel system any face
detected at any time gets recognized instantly. That’s make
a difference in between CPU implementation and GPU
implementation in real time.

Fig. 13 Time taken by individual component on GPU vs CPU.

Fig.14 and 15 are frames of size 1219×810 and 2048×1536
respectively. The first frame has taken 893.78 ms and
second frame has taken 1466.38 ms for overall processing
(excluding image loading and writing to hard disk)

Shivashankar J. Bhutekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2013-2018

www.ijcsit.com 2017

Fig. 14 Frame size of 1219×810 taken 893.78 ms for processing on GPU

Fig. 15 Frame size of 2048×1536 taken 1466.38 ms for processing on GPU

VII. CONCLUSION AND FUTURE WORK

As the developed system processes face both detection
and recognition in real time on GPU fastest than CPU. The
algorithms are run in parallel one detects a face and forward
it to face processing system is a key point of this paper. In
conventional face processing system face recognizer has to
wait until all the faces in frame gets detected therefore a
time consumption is large. As from the experimental results
it is clear that the GPU plays a vital role in parallel
computing.

This system is for one camera device if there are multiple
cameras and wants to track a person from one device to
another how the hand off take place between multiple
devices? How to synchronise time frame between two
devices? are the future work for this paper.

REFERENCES
[1] VIDIA C- programming guide http://docs.nvidia.com/cuda/cuda-c-

programming-guide.
[2] Compute Capabilities of GPU https://developer.nvidia.com/cuda-

gpus.
[3] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.

Computer. Vision, vol. 57, no. 2, pp. 137–154, 2004.
[4] M. Turk, A. Pentland ,“Eigenfaces for Recognition”, Journal of

Cognitive Neuroscience, pp.71-86, 1991
[5] K.-K. Sung and T. Poggio, “Example-based learning for view-based

human face detection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 1, pp. 39–51, 1998.

[6] H. A. Rowley, S. Member, S. Baluja, and T. Kanade, “Neural
network based face detection,” IEEE Transactions On Pattern
Analysis and Machine intelligence, vol. 20, pp. 23–38, 1998.

[7] H. Schneiderman and T. Kanade, “A statistical method for 3d
object detection applied to faces and cars,” IEEE Conference On
Computer Vision and Pattern Recognition, vol. 1, pp. 746–751,
2000.

[8] M. hsuan Yang, D. Roth, and N. Ahuja, “A snow-based face
detector,” in Advances in Neural Information Processing Systems
12. MIT Press, 2000, pp. 855–861.

[9] Bharatkumar Sharma, Rahul Thota, Naga Vydyanathan, and Amit
Kale "Towards a Robust, Real-time Face Processing System using
CUDA-enabled GPUs" High Performance Computing (HiPC), 2009
International Conference 2009, Page(s): 368 – 377.

[10] A. K. Jain, R. Bolle, and S. Pankanti, "Biometrics:Personal
Identification in Networked Security," A. K. Jain, R. Bolle, and S.
Pankanti, Eds.: Kluwer Academic Publishers, 1999.

[11] K. Kim, "Intelligent Immigration Control System by Using Passport
Recognition and Face Verification," in International Symposium on
Neural Networks.

[12] J. N. K. Liu, M. Wang, and B. Feng, "iBotGuard: an Internet-based
intelligent robot security system using invariant face recognition
against intruder," IEEE Transactions on Systems Man And
Cybernetics Part C-Applications and Reviews, Vol.35, pp.97-105,
2005.

[13] H. Moon, "Biometrics Person Authentication Using Projection-
Based Face Recognition System in Verification Scenario," in
International Conference on Bioinformatics and its Applications.
Hong Kong, China, 2004, pp.207-213.

[14] Youngsang Woo, Cheongyong Yi, Youngmin Yi “FAST PCA-
BASED FACE RECOGNITION ON GPUS”

[15] CUDA Runtime API http://docs.nvidia.com/cuda/cuda-runtime-api.
[16] Yale face database http://vision.ucsd.edu/datasets/yalefacedataset
[17] BioId face dataset ftp://ftp.uni-erlangen.de/pub/facedb/BioID-

FaceDatabase-V1.2.zip
[18] M. Turk and A. Pentland, "Face Recognition Using Eigenfaces," in

Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1991, pp.586-591.

Shivashankar J. Bhutekar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2013-2018

www.ijcsit.com 2018

